Nonuniqueness of coefficient rings in a polynomial ring
نویسندگان
چکیده
منابع مشابه
Ring-LWE in Polynomial Rings
The Ring-LWE problem, introduced by Lyubashevsky, Peikert, and Regev (Eurocrypt 2010), has been steadily finding many uses in numerous cryptographic applications. Still, the Ring-LWE problem defined in [LPR10] involves the fractional ideal R∨, the dual of the ring R, which is the source of many theoretical and implementation technicalities. Until now, getting rid of R∨, required some relatively...
متن کاملReduced Gröbner Bases in Polynomial Rings over a Polynomial Ring
We define reduced Gröbner bases in polynomial rings over a polynomial ring and introduce an algorithm for computing them. There exist some algorithms for computing Gröbner bases in polynomial rings over a polynomial ring. However, we cannot obtain the reduced Gröbner bases by these algorithms. In this paper we propose a new notion of reduced Gröbner bases in polynomial rings over a polynomial r...
متن کاملRings with a setwise polynomial-like condition
Let $R$ be an infinite ring. Here we prove that if $0_R$ belongs to ${x_1x_2cdots x_n ;|; x_1,x_2,dots,x_nin X}$ for every infinite subset $X$ of $R$, then $R$ satisfies the polynomial identity $x^n=0$. Also we prove that if $0_R$ belongs to ${x_1x_2cdots x_n-x_{n+1} ;|; x_1,x_2,dots,x_n,x_{n+1}in X}$ for every infinite subset $X$ of $R$, then $x^n=x$ for all $xin R$.
متن کاملFaster integer and polynomial multiplication using cyclotomic coefficient rings
We present an algorithm that computes the product of two n-bit integers in O(n log n (4\sqrt 2)^{log^* n}) bit operations. Previously, the best known bound was O(n log n 6^{log^* n}). We also prove that for a fixed prime p, polynomials in F_p[X] of degree n may be multiplied in O(n log n 4^{log^* n}) bit operations; the previous best bound was O(n log n 8^{log^* n}).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1972
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1972-0294325-3